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ABSTRACT

Molecular dynamics trajectories of large biological molecules are
restricted to nanoseconds. We describe a computational method,
based on optimization of a functional, to extend the time of
molecular simulations by orders of magnitude. Variants of our
technique have already produced microsecond and millisecond
trajectories. The large steps enable feasible computations of
atomically detailed approximate trajectories. Numerical examples
are provided: (i) a conformational change in blocked glycine
peptide and (ii) helix formation of an alanine-rich peptide.

[. Introduction

Molecular dynamics (MD) simulations provide an atomi-
cally detailed description of complex systems on a wide
range of temporal and spatial scales. Macroscopic phe-
nomena, such as conduction, can be investigated with
computer simulations based on microscopic interactions.
Conduction requires extrapolation from microscopic mod-
eling to large temporal and spatial scales. The focus of
this Account is the extension of simulation time scales
using recent methodology!® to enable studies of bio-
chemical phenomena not accessible to MD. Molecular
processes in biology happen on time scales that range
from femtoseconds to minutes and more.

Here, we use the term MD for a simulation technique
that solves the classical equations of motion at the atomic
level. We assume that an accurate (and usually empirical)
potential is available that describes the interactions
between the atoms. The dynamics on the empirical energy
surface is described by classical mechanics (Newton’s law).
We exclude from the present discussion phenomenologi-
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cal models, with potentially smaller number of degrees
of freedom, such as the Langevin equation. The discussion
is limited to dynamical models and differential equations
that directly follow from microscopic parameters. For
example, the Langevin equation requires a friction con-
stant. The friction constant, which significantly affects the
dynamics, is not a microscopic parameter. We also do not
discuss calculations that assume a clear separation of time
scales such as the transition state theory or the “transition
paths sampling”.# The discussions are therefore limited
to the most straightforward mode of calculations.

Despite the numerous successes of the MD approach
for studying biochemical processes,® an important limita-
tion stands out. The extrapolation to large temporal scales
was proven problematic, and most practical applications
have been limited to nanoseconds. As a result, it is not
currently possible to study the atomically detailed dynam-
ics of many interesting processes in biochemistry and
biophysics. Examples are conformational transitions rel-
evant for protein activity (e.g., the R-to-T transition in
hemoglobin, tens of microseconds®) or ion permeation
through membrane channels (microseconds for ion per-
meation through the gramicidin channel’). To understand
the origin of this limit and why it was (and still is) so hard
to fix, we will briefly review current algorithms for MD
calculations. We then proceed with the description of a
new promising approach to extend the time scales acces-
sible to computer simulations that was developed in the
authors’ laboratory. Two examples are discussed at the
end of the Account.

Il. The Molecular Dynamics Approach

In the molecular dynamics approach we determine the
time evolution of a molecular system. This time evolution
is called a trajectory and is denoted by )?(t), where X is
the coordinate vector of all the atoms in the system and
t is the time. The classical equations of motion that
determine a trajectory are

dX_ _du

dt? dX
where M is the mass matrix (diagonal for Cartesian
coordinates) and U is the microscopic interaction poten-
tial. With two initial conditions, X(t =0) and V(t=0) =
dX/dt|—o, eq 1 can be solved in small time steps. A
procedure to solve numerically eq 1, which is widely used
in condensed phase simulations, is the Verlet algorithm,?

@)

S = - AP dU
Xy =X + AV, — M- ==
i+1 i i 2 dX ;(=;<i
- - At|dU du @
Vig =V, - M7= -
2 dXIx=x, dXIx=x,,,

The index i is for the discrete time measured in steps of
At. In a single cycle we use the coordinates and the
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velocities at time i to generate the coordinates and the
velocities at time i + 1. This process is repeated until the
number of steps times the step size is equal to the time
of interest.

The equation for the coordinate vector resembles a
second-order Taylor expansion in the time step. To obtain
an accurate solution, the time step must be small. The
typical time step that is used in numerical solutions of eq
2 is a femtosecond (10%° s). To reach a microsecond and
watch ion migration through a channel, 10° femtosecond
steps are required. Moreover, milliseconds (and 10%
femtosecond steps) are required to simulate gate opening
in channels. The large number of steps necessitates
tremendous resources and cannot be done in a routine
way. The sequential solution of eq 2 is therefore limited
in most applications to the nanosecond time scales
mentioned earlier. Heroic efforts, using months of CPU
time on a supercomputer, led to a microsecond trajec-
tory.® However, these calculations are far from routine.

Is it possible to reduce the number of steps by increas-
ing the step size? Most of the computational efforts are
spent on computing the potential derivatives (the forces).
A reduction in the number of steps will reduce the number
of force evaluations and speed up the calculations. By
increasing the size of the time step, we expect to trade
accuracy for speed. Numerous studies in computational
biochemistry are qualitative explorations along the reac-
tion pathway and may not require the high accuracy of a
femtosecond step. Unfortunately, as was shown by a series
of studies,? an increase of the time step in the framework
of egs 1 and 2 is limited. While much has been learned,
and numerous algorithms to speed up the calculation of
the potential derivatives have been designed,* the actual
increase in the time step was small. The increase of less
than an order of magnitude is still too small to make
possible the study of the processes mentioned before.

The reason for the apparent bound on the step size is
stability. Some of the coordinates change rapidly in time
(bond vibrations, atomic collisions), and it is necessary
to use small steps to follow the rapid changes. If the basic
time step is increased beyond a few femtoseconds, then
the solution accumulates exponential errors. This means
that the coordinates “blow up”, and after a few iterations
they do not resemble a known biomolecule. An example
of a numerical “blow up” is shown in Figure 1 for the
harmonic oscillator. When the time step is larger than a
fifth of the period, the solution loses stability.

Since the rapid motions are the cause, efforts have been
made to remove some of them. For example, the SHAKE
algorithm freezes internal coordinates (bonds, angles, etc.)
at their ideal values. The freeze removes fast motions from
the integration scheme and generates approximate tra-
jectories.’? The removal of high-frequency motions is
appealing since fast motions are expected to be less
relevant at long times compared to slow degrees of
freedom of the system. The filtering enables an increase
of the time step by a factor of about 2. This increase is
significant but still insufficient to cover the many orders
of magnitude in time that are not accessible to MD.
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FIGURE 1. Demonstrating the numerical instabilities of the Verlet
algorithm for the harmonic oscillator. The amplitude is plotted as a
function of time. The oscillator period is 0.063. When the time step
is set to about one-fourth of the period, the coordinates increases
exponentially.

In SHAKE the fast degrees of freedom are identified
first, and the contributions of these degrees of freedom
are removed from the equations of motion. It is not simple
to identify all the rapid motions, and the difficulties in
the identification bound the size of the step even in
algorithms that use SHAKE. Besides bond and angle
vibrations, other fast motions are induced by collisions
and are not covered by the SHAKE algorithm. Atoms that
are close to each other define a “collision”. They experi-
ence significant repulsive potential that forces them to
depart rapidly. The identity of colliding atoms is constantly
changing, making it difficult to choose the proper coor-
dinates for tailored analysis. Special treatment of collisions
has been attempted in the past but is inefficient to execute
for more than one coordinate at a time.*® In the context
of the problems mentioned above, the backward Euler
(BE) scheme!* is an intriguing approach. The BE makes it
possible to reduce the amplitudes of high-frequency
motions with no need to identify them first. However, to
recover energy that is lost in BE through the rapid modes,
a Langevin equation with a phenomenological friction
coefficient is used.

1. Functional Approach to Classical
Mechanics

Equation 1 is not the only way to think about classical
dynamics. An alternative is the use of functionals and
actions. The classical action S is?®

Sy = JiLdt L= %XI-M-X - UX) 3)
For convenience we define mass-weighted coordinates Y
= MY2X, and rewrite the Lagrangian L as L = (1/2)Y%Y —
U(\?). This substitution eliminates the need to carry around
the mass. A trajectory, ?(t) (t € [0,7]), is determined from
eq 3 using the condition that S, is stationary with respect
to variation in V(t). The end points of the trajectory are
fixed.1® V(t) that makes S stationary solves also the
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classical equations of motion (eq 1). Equation 3 is not the
only functional that describes classical dynamics. An
alternative is (based on integration over the path length
dl = Ydt!6)

S, = {ﬂ/z(E —U)dl (4)

Instead of fixing the total time as in eq 3, the total energy
of the system (E) is fixed. As before, the end points Y, and
Y, are constrained. Fixing the energy instead of time is
attractive since the energy can be estimated using equi-
librium considerations. The total time is hard to estimate
without kinetic data. Note that eq 4 also has an “equation
of motion” associated with it, similar to the relationship
between egs 1 and 3.16

It is possible to design a numerical protocol to compute
trajectories with prespecified boundary conditions (\7(0)
and V(t)) that is based on the above definition of the
actions. For example, a discrete version of the action in
eq 3is

(?i - _Y)ifl)t (V| - vifl)

SCl = Z At
. 2
i=T7N 2At

where \70 and VN are the fixed end points and the time of
the trajectory is NAt. By Y; we denote the numerical
approximation to V(ti). The finite difference expression
provides an approximation for the kinetic energy. The plan
is to optimize S, as a function of all the intermediate
coordinates {\7]-}}“:1 (time slices). The optimal path is the
desired trajectory. Note, however, that the problem at
hand is significantly more complex than the numerical
solution outlined in eq 2. In eq 5 the whole trajectory is
considered. The trajectory (a set of N time slices) is
optimized to give a stationary S.. The dimensionality of
the optimization problem is proportional to the number
of steps. If the time step is a femtosecond and the total
length of a trajectory is a nanosecond, then a million time
slices are required simultaneously to perform the action
optimization. This is a significant burden on any com-
puter, as modern as it may be. The effort of computing
an action with N time slices should be contrasted with a
single or two structures that are required to progress the
solution in eq 2.

How about stability? Can we use the action formulation
and employ significantly larger time steps than before?
Unfortunately, the stability of the numerical solution of
the above action is comparable to that of the initial value
difference equation (eq 2) (Ron Elber, unpublished re-
sults). One of the problems is that the action can change
from having a minimum to having a maximum as a
function of the step size, making the optimization difficult
to perform. It is therefore no wonder that the optimization
of the action in a straightforward way is not a widely used
numerical approach to study classical dynamics. It seems
that we are stuck with the initial value approach and the
small time step.

-uy| )
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IV. The Stochastic Difference Equation

The formulations we discussed so far are deterministic.
Given initial coordinates and velocities, or given initial and
final coordinates, there is a unique trajectory that solves
the classical equations of motion. This statement is correct
from an analytical point of view but becomes less obvious
when finite computer accuracy is considered. In con-
densed phase simulations, the trajectories tend to be
chaotic. This means_that small changes in the initial
conditions V(O) and Y(0) can drastically modify the cal-
culated path. Since practical calculations always have (at
least) truncation errors, slightly different starting values
may Yyield profoundly different trajectories. A single trajec-
tory is therefore an ill-defined entity.

If we were provided with the error €(t) of the numerical
solution, then the “true” trajectory ?(ti) =Y+ €(t;) could
have been obtained. In the above formula, ?(ti) is the exact
trajectory and Y, is the trajectory generated numerically.
Of course, in practice the errors are unknown. The
algorithms discussed so far ignored the errors, assuming
that the time step is sufficiently small. In the stochastic
difference equation (SDE) we model the errors statistically.
In the present version we use a simple model of the errors
(see below). It is expected that as time progresses and
more experience is gathered on the properties of the
solution, better modeling of the errors will emerge.

Consider the finite difference equation that defines an
error function for the “true” trajectory V(t):

€)=

Y(t + At) + Y(tz— At) — 2Y(b) n d_g B (62)
At dY [¥=Y(t-at)
() = Y( + Al) + YA(IIZ— Al) —2Y(l) +
du/dy — [(dU{»dY)-é,]éI (6b)
2[E — U(Y)] Y=Y(1-Al)

Equation 6a is an approximation to eq 1. Equation 6b is
not so well used, but similarly to eq 6a it can be derived
by functional variation of an action (eq 4'°). In eq 6b we
used | to denote the path length and & to denote a unit
vector parallel to the path direction. This vector is
estimated by finite difference (€, = [\7(I + Al) — \7(I — ADNJ/
(2AD)).

Since the step, At or Al, is finite, the “error” as defined
in eqs 6 is not zero for the exact trajectory. Equations 6
are used to define an approximate trajectory {Vi} iN=0 such
that

Yigr T Yiog — 2Y5 n du

0= - =
At dy lv=v, ,

(7a)

Yoy + Y, — 2, N du/dy,_, — [(du/dY,_,)8 8,

G- 2 -
Al 20E — U(Y, )]

(7b)

In the stochastic difference equation we compute the
vectors {Y}N, and model the errors statistically in an
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FIGURE 2. Error correlation function computed as an ensemble
average over an exact trajectory; C(f) = [4(f)~€(0)L1 The error is a
function of the time step. For sufficiently large time step (At > 10
fs), rapid decay of the correlation is observed (a). More significant
correlation is observed for a 2 fs time step, but even then the
correlation decays substantially after 10 ps (b).

attempt to estimate the deviation from V(t). We sample
an ensemble of plausible trajectories using eq 7 with
“allowed” errors that are determined by the model. Based
on numerical experimentation, we have chosen the fol-
lowing (Gaussian) model for €(t):*

CE()=0 CE(0)-€(t) = o o(t) (8)

The error function (eq 6), which was extracted for a
small system (a dipeptide) and a larger system (folding of
C peptide in explicit solvent), indeed supports this model
(see Figures 2—5 in ref 1). A few comments:

(i) We assume that the errors are independent, that they
are distributed uniformly in time, and that their distribu-
tion (at one time slice) can be described with a single
width parameter. This is (of course) a simplification, and
refinements may follow. For example, it is possible to
make the error dependent on the type of the coordinates
or on the time.

(ii) The error function depends on the step size. There
is a “minimal size” of a step for which the correlations
decay rapidly, as suggested by eq 8. Our statistical model
will not work for step sizes that are “too small” (Figure 2)

since the trajectory is produced accurately for most
motions. The few modes that are not accurate are cor-
related.

(iii) There is a proof? that the filtering of high-frequency
modes (w > x/At) is the major difference between
{Y}N, and Y(t). In the approximate trajectory, {Y}N,,
the rapid motions are removed. In contrast to the SHAKE
algorithm, the filtering is done in an automated way, and
thus it is not necessary to identify the rapid motions first.

Item (iii) mimics the SHAKE algorithm mentioned
earlier. However, there are also difficulties. For example,
in a double-well system there are two types of rapid
motions. One rapid motion corresponds to oscillations
within a well. The second fast motion is the transition over
a barrier from one well to the next. Filtering of all the high-
frequency modes also removes infrequent but fast motions
such as transitions over high-energy barriers. As a result,
the SDE describes better diffusive behavior and motions
over low barriers, in which rapid and rare transitions do
not make significant contributions to the dynamics.

Is it possible to recover some of the rapid motions, or
to model them? This is the point where the errors enter
the game. Accepting the model of eq 8, we ask, “What is
the probability of obtaining error € at the i time slice?”
The error is used in the statistical sense to get the optimal
(but approximate) trajectory closer to the exact result. The
exact trajectory includes the high-frequency components
that are modeled in the SDE as Gaussian noise,

dP(é;) Oexp

eiz
- 2_0_2]dgi ©)

Since the errors are assumed to be independent of
time, we can also write

dP(y, ..., €) = [dP(E) (10)

Equation 10 is the probability density for a trajectory
as a function of the sampled errors. It is convenient to
express the probability density as a function of the
coordinates and not the errors (the relation is given in eq
6a). We also use the observation! that the Jacobian de¢;/
d)?i is a constant to get

dP(Yy, ..., Yy O
1 Yier Y = 25 du
exp|— —) +—
20°4 At? dy

2
= UdYk

(11)

A trajectory that maximizes the probability density in
eqg 11 minimizes the “action”:

Ssper =
) ?Hl + ?ifl - 2T(i du 2
Aty & = Aty +— | 12
T T AP dy Y=Y,

Sspet IN eq 12 is optimized with simulated annealing,
and alternative trajectories are sampled according to the
weight ¢?. The subscript SDET stands for “stochastic
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difference equation with respect to time”. At first sight it
is not obvious that eq 12 is easier to optimize in compared
to the classical action(s). A second look, however, suggests
a few differences. First, we now have a stochastic model
for the errors, which makes it easier to obtain cheaper
(approximate) solutions. Second, the solution of eq 12 is
stable for almost an arbitrary time step, providing ap-
proximate trajectories with filtered high-frequency modes.
It is therefore different from the classical action that
quickly becomes unstable as the step size increases. Third
(true also for the classical action but not for MD), the
solution of eq 12 can be optimized efficiently in parallel
even on clusters of PCs with a relatively slow network.® A
single MD trajectory cannot be run efficiently on such a
cluster.

A similar protocol also follows for eq 6b. It is possible
to have a related statistical model and an action when
integrating over the path length. We denote the alternative
action by Sspg.:

SspeL = AlZgiz (13)
1

The subscript SDEL stands for “stochastic difference
equation with respect to length”, to differentiate it from
the time approach. The errors € are defined in eq 6b.

In the past!—2 we only worked with the action defined
in eq 12. Here we consider using the “length” action. The
obvious question is, “What does eq 13 add in comparison
to MD or to eq 12?7

Note that in eq 12 the total time of the trajectory is
fixed. In classical mechanics the “conjugate” variable to
time is the energy, and in eq 13 we exchange the time by
the energy. The time can be computed by integration
along the optimized path:

=

dl
V2(E - V)

It is advantageous to have the time as an output in Sspg.
instead of an input as in Ssper. The energy, which is an
equilibrium property, is easier to estimate from the
starting conditions compared to the total time of the
process.

The two actions differ in the way in which the points
are distributed along the path. In Ssper the points are
equally distributed in time, while in Sspg, they are equally
distributed in space. Depending on the problem at hand,
different distribution of points along the path might be
beneficial. Consider for example (again) a transition
between two wells. In the time representation, this is a
rare transition that, once initiated, happens rapidly. The
actual transition time may be significantly shorter than
the time step At used in eq 12. As a result, it is difficult to
probe rapid transitions within the Ssper protocol. A typical
trajectory between two minima separated by a significant
barrier will have the system at t — At located at one side
and at t located on the other side. The rapid transition
will not be sampled.

gmz——QL—— (14)
' /2(E - U(Y)

400 ACCOUNTS OF CHEMICAL RESEARCH [ VOL. 35, NO. 6, 2002

-14 T T T T T
“Initial Valtue Solution —+—
“Boundary Value Solution" ---x---

145 E

psi
>
T
L

18 L I L L L
-98 -97.5 -97 -96.5 -96 -95.5 -95

phi
FIGURE 3. Final cycle of the path refinement procedure. The initial
Al is divided into 10 segments. The new segments are used to
optimize the action, keeping the end point of the original interval
fixed. Convergence is assumed when the results of the path
optimization (+) agree with the solution of an initial value solver ()).

Rapid transition events are better studied with Sspg,.
We observe filtering of high-frequency components also
in the optimization of Sspg . However, because the path
is parametrized differently (with respect to length), large
spatial motions are maintained, regardless of the speed
at which they occur. As a result, rapid transitions (in time)
with significant spatial changes (jumping between alter-
native minima) are well described in contrast to Sgper.

As we show in the two computational examples (sec-
tion VI), the spatial view of the transition that is obtained
by optimization of Sspg, is a sound approximation, even
with only a few points. The features that are missed in
the low-resolution trajectories are oscillations in quasi-
stationary states that change little the spatial position of
the system. However, the absolute time scale (eq 14) is
an integration over the path. By filtering vibrations within
wells, the path is made significantly shorter, and so is the
output time. The Sspg. calculation with a small number
of points eliminates the waiting time in the well that in
many cases makes a significant contribution to the total
conversion time. Sampling a few intervals, and dividing
these intervals further, can recover the correct time. The
refinement stops when a solution of the differential action
agrees with path optimization of the (small) refined
interval (Figure 3).

V. Computational Procedure

All the calculations described in this section were per-
formed with the program MOIL.Y” MOIL is a suite of
programs for molecular dynamics simulations in the
condensed phase and is in the public domain. Execution
files, source code, and documentation are available from
http://www.tc.cornell.edu/CBIO/moil. One of the modules
in the current release of MOIL is STO, which performs
Sspet calculations. A related code was created to make it
possible to compute classical trajectories as a function of
the spatial length of the trajectory (Sspe.). Specifically, the
functional of eq 13 was implemented into the code, and
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FIGURE 4. Conformation transition from C; axial to G; equatorial in
a blocked glycine on a (¢,3) map. Three trajectories, computed with
the optimization of Sspg. With the same thermal energy, are shown.
The dashed line is the low-resolution path with 20 points, the dotted
line consists of 160 intermediates, and the thin continuous line has
a total of 640 length slices. Note the recovery of significant
oscillations within the wells once more length slices were added.

a penalty function on equal-length displacements was
added (lzi(Ali,H—l - ml[jz) AIO= 1/(N + 1)Zi:0,...NAIi,i+ln
A is a constant (see also ref 18).

The force field in MOIL is a united atom model, which
is a combination of AMBER?® and OPLS.?° Only polar
hydrogens are treated explicitly. The 1—4 scaling factors
for electrostatic and van der Waals interaction were 2 and
8, respectively. No distance cutoff of nonbonded interac-
tions was used in the present study. Solvation effects were
modeled within the surface-generalized Born model
(SGB).?* The SGB approximates the potential of mean
force of the solvent. Effective solvation models were used
for similar tasks in the past (e.g., ref 22).

In the computations described below, the initial and
final configurations and the total energy were provided
as input. In choosing the energy, we considered the depth
of the minima that we wished to reach and added to it
the average thermal energy for a system with N degrees
of freedom. The total energy was therefore Eiotai = Eminimum
+ NKT/2.

Glycine Dipeptide. The initial guess for the action
optimization was a straight-line interpolation between the
two end points: the C; axial and C; equatorial states. All
degrees of freedom were included in the calculations
(including bond length and bond angles). We expect that
bond displacements will be filtered out since they fluctu-
ate rapidly and do not contribute significantly to mono-
tonic changes in the spatial location of the path. The
number of grid points varies from 20 to 160 and 640, and
the results are displayed in Figure 4. The optimization of
the Sspg. action was done to convergence, i.e., until the
gradient of the functional was less than 0.01 mass-kcal/
mol-(A)~L. The typical number of optimization steps that

a b

FIGURE 5. Stick models of the alanine-rich peptide: (a) the
minimized helical conformation; (b) one of the starting unfolded
structures. See text for more details

were required to reach convergence was 2000. The other
test of convergence is further divisions of sampled dis-
placements Al. In Figure 3 we show a final refinement
for an interval in which the path optimization agreed with
a solution of the differential equation.

Helical Peptide. We considered a peptide with signifi-
cant tendency to form a helix,? for which the folding time
has been measured experimentally (it is about 220 ns).
The alanine-rich peptide is ACWAAAH" (AAARTA);ANH,
(Figure 5). The transition from an unfolded conformation
to an o helix is considered. The unfolded conformations
were generated by one nanosecond trajectory at a tem-
perature of 600 K. Structures were picked at intervals of
200 ps and were minimized using the conjugate gradient
algorithm. Convergence was assumed when the norm of
the force vector was less than 0.01 kcal/mol A. The folded
state was constructed as an ideal a helix followed by the
same minimization protocol. The number of grid points
that was used to describe the trajectory and approximate
the action integral was either 11 or 101, and the initial
guess for the trajectory was a SPW minimum energy path
between the two structures.?* A refinement procedure of
two intervals suggests the total time to be 4 ns. The
optimization was stopped after 50 000 simulated anneal-
ing steps (about 6 h on a PC). The complete optimization
run includes 100 heating and cooling cycles of 500 steps
each.

VI. Results

In Figure 4 we show trajectories of glycine dipeptide,
displayed on a (¢,3) map, computed at thermal energy
with different levels of path resolution (starting at the low
resolution of 20 grid points and refining the path to
include 640 points). The blocked glycine is a highly flexible
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FIGURE 6. Following v dihedrals as a function of the trajectory
spatial length. Note the sequential nature of the transition and the
small (overall) differences between the (a) low-resolution path (11
points) and (b) the high-resolution path (101 points).

molecule, and “rare” transitions between the C; axial and
C; equatorial are not so rare. The “barrier” is low, and
some oscillations are observed even at the location of the
traditional barrier. A visual inspection suggests that the
spatial domain visited by the trajectories remains es-
sentially the same while the path resolution is increased.
At the least, the low-resolution path (a few points,
relatively large Al) makes it possible to focus on the
portions of configuration space that are relevant for the
conformational transition at hand. A refinement proce-
dure (Figure 3) suggests that at the limit of small Al we
recover correct classical dynamics. The parametrization
according to the trajectory length ensures computational
efficiency (we are making the most from each point in
space) by emphasizing the transition periods and not the
waiting time in minima. Waiting times are clearly observed
when the number of length slices increases.

In Figure 5 we show a stick model for the folded and
unfolded configurations of the alanine-rich peptide. In
Figure 6 we show a transition path between an unfolded
configuration of the alanine peptide and a helix. The
transition path was computed with 11 and 101 grid points.
Only the dihedral angles with most significant changes
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FIGURE 7. Hydrogen bond formation in low-resolution trajectories
(parametrized by trajectory length, using a total of 11 points). An
average over five folding trajectories is used. Note the significant
similarity between the trajectories. Note also the concerted formation
of hydrogen bonds, supporting a single barrier and the single-
exponential behavior observed experimentally.?

are shown (y dihedrals). Note that the significant oscil-
lations that are observed for the y dihedral of alanine 21
are smoothed out in the lower resolution path. Clearly the
length of the path will be significantly longer once the
oscillations are included. Nevertheless, the position of the
average path is reproduced quite well in the low-resolution
trajectory. Note also that the process occurs in two bursts.
Around a third of the way along the path there is a
concerted transition of alanine 11, 14, and 16, and around
two-thirds of the way alanines 11 and 16 undergo another
transition. A refinement procedure led to a total trajectory
time of 4 ns. More statistics is required to obtain the
kinetic time scale.

Hydrogen bond changes averaged over five trajectories
are shown in Figure 7. The simultaneous formation of
hydrogen bonds suggests a single significant energy
barrier, in accord with the single-exponential behavior that
is observed experimentally.?® This sequence of events is
clearly seen in both paths, despite an order of magnitude
difference in resolution.

VIl. Concluding Remarks

In this Account we propose and demonstrate an alterna-
tive way of computing molecular trajectories. Instead of
parametrizing the trajectory as a function of time, we
parametrize it as a function of length. Instead of solving
the Newton equations, we optimize an action, Sspg, based
on a statistical model of the errors. For activated processes
the numerical protocol leads to the elimination of the
“incubation time” at low resolution. The waiting time at
different minima is of little interest to those who focus
on spatial changes of a molecular process, or in other
words on “molecules in action” and not on “molecules
in suspension”. The examples of a conformational transi-
tion in a blocked peptide and helix formation demonstrate
the filtering effect and the conservation of structural
features along the path. The concerted formation of
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hydrogen bonds during the process of helix formation is
in accord with the single-exponential kinetics.

This research was supported by NIH and NSF grants to R.E.
A.G. is supported by an NSF postdoctoral fellowship.
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